(GAME PLAYING

Chapter 6

Game Playing

* Game playing was thought to be a good
problem for Al research:
— game playing is non-trivial
* players need “human-like” intelligence

* games can be very complex (e.g., Chess, Go)

* requires decision making within limited time

— games usually are:
 well-defined and repeatable

* fully observable and limited environments

— can directly compare humans and computers

Computers Playing Chess

Computers Playing Go

Oe
o

¢0: Google DeepMind §6% AlphaGo

o.o.

?

Challenge Match

- 15 March 2016

O G°°9|¢DeepMmd
Chal lcngoMq h

Outline
€ Games
@ Perfect play (F % %)

— minimax decisions

— o-B pruning (E A7)
€ Resource limits and approximate evaluation
€ Games of chance (‘&4 JL.% F £ 1k %)

€ Games of imperfect information

Games vs. search problems

“Unpredictable” opponent (7 flill #y #f F) —> solution is a strategy specifying a
move for every possible opponent reply

Time limits = unlikely to find goal, must approximate

Vi B AR AT Ji7 4

Plan of attack:

 Computer considers possible lines of play (Babbage, 1846)

* Algorithm for perfect play (Zermelo, 1912; Von Neumann, 1944)

* Finite horizon, approximate evaluation (Zuse, 1945; Wiener, 1948;
Shannon, 1950)

* First chess program (Turing, 1951)

* Machine learning to improve evaluation accuracy (Samuel, 1952-57)

* Pruning (#74%) to allow deeper search (McCarthy, 1956)

Types of games

Deterministic

Stochastic (chance)

perfect chess, checkers, | Backgammon (¥ 3 X
information Go (E#) , FEL)

othello monopoly
imperfect battleships, bridge, poker, scrabble
information | plind tictactoe | (BF F W XK)

nuclear war

Game tree (2-player, deterministic, turns)

MAX (X)

MIN (O) X X X

X
MAX (X) 0

MIN (0) X X

TERMINAL

(] fa] fa]
>
> || =g
O | <

Utility -1

Deterministic Two-Player

* E.g. tic-tac-toe, chess, checkers

* Game search
— A state-space search tree
— Players alternate

— Each layer, or ply, consists of a
round of moves

— Choose move to position with
highest achievable utility

* [ero-sum games sl > = 5
— One player maximizes result
— The other minimizes result

Mmax

min

Minimax Principle

* Assume both players play optimally

— The computer assumes after it moves the opponent
will choose the minimizing move

— The computer chooses the best move considering
both its move and the opponent’s optimal move

computer's
ossible moves

max
min

0000000000
10

board evaluation from computer's perspective

Minimax
Perfect play (s ft %%) for deterministic, perfect-information games

|dea: choose move to position with highest minimax value

= best achievable payoff against best play
EXNFURARERFENZHT, RIRED LA CREZNER

T T/ K A R R AT, 0 4 LMK (3 2 B
AR (3 FMAX)

« MAXTR 58 26 5 A KB B9 R A&

* MINE 56 2% A AR /INME B R &

MINMAX - VALUE(n) =
(UTILITY(n) U LIRSS

I MaX . gecessorsy MINMAX - VALUE(S) 240 gMAXH
MiN,_guecessorsy MINMAX - VALUE(S) 24 AMINT 5

\

Minimax
Perfect play (s ft %%) for deterministic, perfect-information games

|dea: choose move to position with highest minimax value

= best achievable payoff against best play
EXNFURARERFENZHT, RFRED LA CREZNER
E.g., 2-ply game:

MAX

MIN

Minimax algorithm

function MINIMAX-DECISION(state) returns an action
inputs: state, current state in game

return the a in ACTIONS(state) maximizing MIN-VALUE(RESULT(q, state))

function MaX-VALUE(state) returns a utility value
if TERMINAL-TEST(state) then return UTILITY(state)
V¢ —00
for a, s in SUCCESSORS(state) do v+« MaX(v, MIN-VALUE(s))
return v

function MIN-VALUE(state) returns a utility value
if TERMINAL-TEST(state) then return UTILITY(state)
V¢ 00
for a, s in SUCCESSORS(state) do v« MIN(v, MAX-VALUE(s))
return v

Complete??

Properties of minimax

14

Properties of minimax

Complete?? Only if tree is finite (chess has specific rules for this).

a finite strategy can exist even in an infinite tree!

Optimal??

15

Properties of minimax

Complete?? Yes, if tree is finite (chess has specific rules for this)

Optimal?? Yes, against an optimal opponent. Otherwise??

Time complexity??

16

Properties of minimax

Complete?? Yes, if tree is finite (chess has specific rules for this)

Optimal?? Yes, against an optimal opponent. Otherwise??

Time complexity?? O(47)

Space complexity??

17

Properties of minimax

Complete?? Yes, if tree is finite (chess has specific rules for this)

Optimal?? Yes, against an optimal opponent. Otherwise??

Time complexity?? O(47)

Space complexity?? O(bm) (depth-first exploration)

For chess, b=35, m=100 for “reasonable” games

— exact solution completely infeasible

But do we need to explore every path?

18

a— [Pruning

* Some of the branches of the game tree won't be taken
if playing against an intelligent opponent

* “If you have an idea that is surely bad, don’t take the
time to see how truly awful it is.”

-- Pat Winston

* Pruning can be used to ignore some branches

19

MAX

MIN

a—f pruning example

20

MAX

MIN

a—f pruning example
23

X X

3 12 8 2

21

MAX

MIN

a—f pruning example

22

MAX

MIN

a—f pruning example

23

MAX

MIN

a—f pruning example

24

Why is it called o — S

* « is the best value (to MAX) found so far on the current path
BlE AT A AR P EERERAIOMAX x & (s AE) ##F

* If vis worse than @, MAX will avoid it, so can stop considering v's other
children = prune that branch

* Define s similarly for MIN

25

The a— /[algorithm

function ALPHA-BETA-DECISION(state) returns an action
return the a in ACTIONS(state) maximizing MIN-VALUE(RESULT(q, state))

function MaX-VALUE(state, o, 3) returns a utility value
inputs: state, current state in game
v, the value of the best alternative for MAX along the path to state
i3, the value of the best alternative for MIN along the path to state

if TERMINAL-TEST(state) then return UTILITY(state)
U —00
for a, sin SUCCESSORS(state) do
v+— MaX (v, MIN-VALUE(s, o, 3))
if v = 3 then return v
a «— MaX(a, v)
return v

function MIN-VALUE(state, o, 3) returns a utility value
same as MAX-VALUE but with roles of «, 7 reversed

26

Effectiveness of @ — /[Search

Effectiveness depends on the order in which successors are
examined: more effective if best successors are examined first

Worst Case:

— ordered so that no pruning takes place

— no improvement over exhaustive search

Best Case:

— each player’s best move is evaluated first

In practice, performance is closer to best, rather than worst,
case

27

Properties of a— /[

Pruning does not affect final result
Good move ordering improves effectiveness of pruning

With “perfect ordering,” time complexity = O(£77?)
= doubles solvable depth

A simple example of the value of reasoning about which computations are relevant
(a form of metareasoning)

Unfortunately, 35°° is still impossible!

28

Outline
€ Games
€ Perfect play (&%)

— minimax decisions

— o-B pruning (E A7)
€ Resource limits and approximate evaluation
€ Games of chance (B4 /LEFH £ 8 #H %)

€ Games of imperfect information

Resource limits

Standard approach: Depth-limited search
® Use CUTOFF-TEST (&t |3) instead of TERMINAL-TEST (% ki)
e.g., depth limit (perhaps add quiescence search # %1% %)
® Use EVAL instead of UTILITY
AT DL B RORME B B SR B BEVALEUR 2R B &K

i.e., evaluation function that estimates desirability of position

Suppose we have 100 seconds, explore 10* nodes/second
—> 10° nodes per move = 358/2

— o — [3 reaches depth 8 = pretty good chess program

4-ply lookahead is a hopeless chess player!
- 4-ply = human novice
- 8-ply = typical PC, human master
— 12-ply = Deep Blue, Kasparov

30

Evaluation functions

* Function which scores non-terminals

1/ Wet 1 1 @ ¢

2 E1:12z2¢ l.l 2

H B B
2Kz

< N

2 2¥

a 2wl g ¥g
Black to move White to move
White slightly better Black winning

* Ideal function: returns the utility of the position
* In practice: typically weighted linear sum of features (4F4E)

Eval(s) = w,fy(s) + wyfy(s) + ... + w,f (s)
e.g., for chess, w;, = 9 with

f,(s) = (number of white queens) - (number of black queens), etc.
31

More on Evaluation Functions

The board evaluation function estimates how good the current board
configuration is

A linear evaluation function of the features is a weighted sum of f1, 2 13,

— More important features get more weight
The quality of play depends directly on the quality of the evaluation function

To build an evaluation function we have to:
— construct good features using expert domain knowledge

— pick or learn good weights

32

Digression: Exact values don't matter

MAX

MIN 1'? 1 V 20

Behavior is preserved under any monotonic (2) transformation of EVAL
Only the order matters:

payoff (£2) in deterministic games acts as an ordinal utility (/%3¢ A)
function

33

Dealing with Limited Time

* In real games, there is usually a time limit 7 on
making a move

* How do we take this into account?

— cannot stop alpha-beta midway and expect to use
results with any confidence

— so, we could set a conservative depth-limit that
guarantees we will find a move in time < 7

— but then, the search may finish early and the
opportunity is wasted to do more search

34

Dealing with Limited Time

* In practice, iterative deepening search (IDS) is
used
— run alpha-beta search with an increasing depth limit

— when the clock runs out, use the solution found for
the last completed alpha-beta search (i.e., the
deepest search that was completed)

35

Deterministic games in practice

Chess (E fr £ 4) : Deep Blue defeated human world champion Gary Kasparov
in a six-game match in 1997. Deep Blue searches 200 million positions per
second, uses very sophisticated evaluation, and undisclosed methods for
extending some lines of search upto 40 ply (. EEF) .

- WWEMGH TN IR TN KRR FF . A ELE—FF R EEEHTS
WE—2 R T 4B BT ARG R 89 -5 Kasparov
— Kasparov lost the match 2 wins to 3 wins and 1 tie

Deep Blue played by “brute force” (i.e., raw power from computer speed and memory); it
used relatively little that is similar to human intuition and cleverness

— Used minimax, alpha-beta, sophisticated heuristics

36

Deterministic games in practice

Checkers (T pk4t) : Chinook, the World Man-Machine Checkers Champion.

* Chinook ended 40-year-reign of human world champion Marion Tinsley in
1994,

* In 2007, checkers was solved: perfect play leads to a draw.

Chinook cannot ever lose

BH T — AR AT H AT oy A 443,748,401, 247/ 1 £ T8/ T iy AL R £
T8 J& , 2y 7% Ry (endgame) & AL 2 T Bk
50 machines working in parallel on the problem ‘“”.{j—-e‘*‘\s

[|
&= -\

37

Deterministic games in practice

Othello (¥ % %) : human champions refuse to compete against computers,
who are too good.

Go (E#) : human champions refuse to compete against computers, who are
too bad. In go, b > 300 (#f# %19x19) , so most programs use pattern
knowledge bases to suggest plausible moves.

A new benchmark for Artificial Intelligence (A T % f #r 8y X4 A)

38

AlphaGo: First to beat human pro

in 19x19 Go
* Google DeepMind computer go player

— deep neural networks:
* value networks: to evaluate board positions

* policy networks: to select moves

— trained by
* supervised learning

* reinforcement learning by self-play

— search algorithm

* Monte-Carlo simulation + value/policy networks

39

AlphaGo: Background

* reduction of search space:
— reduced depth
* position evaluation

— reduced branching
* move sampling based on policy
* policy = probability distribution p(as)

40

Deep Neural Networks in AlphaGo

Rollout policy SL policy network RL policy network Value network Policy network Value network

X m %ﬁ} @
/

i _

Human expert positions Self-play positions

AlphaGo uses two types of neural networks:

Py @ls) v (5)

}IOM}BU [eIndpN

e1eq

— policy network: what is the next move?

* learned from human expert moves
— value network: what is the value of a state?

* learned from self-play using a policy network

SL = supervised learning, RL = reinforcement learning

Deep Neural Networks in AlphaGo

AlphaGo win rate (%)

70-
60 -
50 -
40 -
30 -
20 -

10
0

128 filters
192 filters
256 filters
384 filters

50

51

52 53 54 55 56 57
Training accuracy on KGS dataset (%)

58

959

42

Nondeterministic games:
“ﬁ

backgammon(

=X

25 24 23 22 21 20 19 18 17 16 15 14 13

i)

43

Nondeterministic games in general

In nondeterministic games, chance introduced by dice, card-shuffling

Simplified example with coin-flipping:

MAX

JUR ¥ K> CHANCE

44

Nondeterministic games in general

* Weight score by the
probability that move occurs , ax

e Use expected value for move:
instead of using max or min, CHANCE
compute the average,

weighted by the probabilities
of each child MIN

* Choose move with Ajghest
expected value

45

Maximum Expected Utility

Why should we average utilities? Why not minimax?

Principle of maximum expected utility: an agent should chose
the action which maximizes its expected utility, given its
knowledge

General principle for decision making
Often taken as the definition of rationality
We'll see this idea over and over in this course!

46

Algorithm for nondeterministic games

EXPECTIMINIMAX gives perfect play

Just like MINIMAX, except we must also handle chance nodes:

if stateis a Max node then

return the highest EXPECTIMINIMAX-VALUE of SUCCESSORS(state)

if stateis a Min node then

return the lowest EXPECTIMINIMAX-VALUE of SUCCESSORS(state)

if stateis a chance node then

return average of EXPECTIMINIMAX-VALUE of SUCCESSORS(state)

a7

Stochastic Two-Player

* Dice rolls increase b: 21 possible rolls with 2
dice
— Backgammon = 20 legal moves
— Depth 4 =20 x (21 x 20)® 1.2 x 10°
* As depth increases, probability of reaching a
given node shrinks
— So value of lookahead is diminished
— So limiting depth is less damaging
— But pruning is less possible...
 TDGammon uses depth-2 search + very

good eval function + reinforcement
learning: world-champion level play

0 12 3 4 5 6 7 8 9 1011 12
7 N

25 24 23 22 21 20 19 18 17 16 15 14 13

48

Digression: Exact values DO matter

MAX
DICE 21 40.9
9/ \ A 9/
/
MIN

znif' 3!:%7 1\;‘% 400
/ lﬁ"x /) \

> 2 3 3 4 %1 4 4 20 203 30 4 1 4bo doo
Behaviour is preserved only by positive linear transformation of EVAL

Hence EVAL should be proportional to the expected payoff
T B8 AP 17 A AR Ry By B B AR (BB IE 2 R

49

Outline
€ Games
€ Perfect play (&%)

— minimax decisions

— o-B pruning (E A7)
€ Resource limits and approximate evaluation
€ Games of chance (‘&4 JL.% F £ 1k %)

€® Games of imperfect information

Games of imperfect information

E.g., card games, where opponent’s initial cards are unknown
Typically we can calculate a probability for each possible deal

Seems just like having one big dice roll at the beginning of the game

|dea: compute the minimax value of each action in each deal,

then choose the action with highest expected value over all deals

AP — AN R F0 B B e AT B AR B, oSGt B A T AR AR By W AT 30 B R
INRRAE, ﬁifﬁ)ﬂ% A i AR RAT B A B X PR R UL E B 2 fE

51

Example

Four-card bridge /whist /hearts hand, MAX to play first

ovotjsaf7al B4 fovfselillzal ovfos I3 ZIEZ
— — e — 0
CETEmmUZIDEE Sl Sl £

52

MAX [cvjcefeai7a

N [fivlooloalss]

MAX [svfseaa{7a
MIN - [4¢f2a]oafss

=

84

_-

Ezccl

oloofoafa] o

==
L2 Dl Tl T

LT

Example

Four-card bridge /whist /hearts hand, MAX to play first

9%

g2 s T
g CFjE T

& K
: K

53

Example

Four-card bridge /whist /hearts hand, MAX to play first

g Rk B

i fiofeoloalss] . [oalontos] g [
N
oo T TOIIIT SPMT Sl £

MAX

MIN

T ¢
— — -0.5

MIN |4 Joafosfos| [Joajoslss] (o) |4 [2el3|)] [+ NECH N\ S
05

54

Proper analysis

* Intuition that the value of an action is the average of its values
in all actual states is WRONG

With partial observability, value of an action depends on the

information state or belief state ({2 /Z 4 4) the agent is in
Can generate and search a tree of information states

| eads to rational behaviors such as
€ Acting to obtain information
€ Signaling to one's partner

€ Acting randomly to minimize information disclosure

55

Computers Playing Texas Holder

* 2015, Heads-up limit hold’em poker is solved (
AR EEMN)

e 2017, DeepStack became the first Al capable of
beating professional poker players at heads-up
no-limit Texas hold‘em poker (7[R T y& 42 N
P

e 2019, Al now masters six-player poker, Science

56

Computers Playing Texas Holder

A MYSTERY AL JUST CRUSHED
EI&%EBI{EST HUMAN PLAYERS AT

According to the human players
that lost out to the machine,
Libratus is aptly named. It does a
little bit of everything well:
knowing when to bluff

and when to bet low with very good cards,

as well as when to change its bets just to
thrown off the competition.

57

Computers Playing Mahjong

© 2017 4, EEORFRAAAEM. ZAHL. ERZA. HEf
=] B Bk AL 2 5 By % oS TUE B OB A 72 50 T E

* 201956 A, WA I B 5 Be I & B IR Al R 48 Suphx
A ENMEE T AT LREFe TRRT LRI B
Al % 4t

BEEEER SoxEE:
GRS R A
R, i
S2RE RS LI -
S BRI SF T AEAREE T s s
SR RIS S+
BEXIRS=EE Bi&RRTR
SRRSTSESLTEE S IR RERT

TEfRE AEDIRIE o8

Summary

Games are fun to work on!

— perfection is unattainable = must approximate

— Games are to Al as grand prix racing is to automobile design

Game playing is best modeled as a search problem

— Search trees for games represent alternate computer/opponent moves

Evaluation functions estimate the quality of a given board configuration for
each player

Minimax is an algorithm that chooses “optimal” moves by assuming that the
opponent always chooses their best move

Alpha-beta is an algorithm that can avoid large parts of the search tree, thus

enabling the search to go deeper — JH F& 70 & By T 4% DL & 5 2 %

59

Summary of Search

* Uninformed search strategies
Breadth-first search (BFS), Uniform cost search, Depth-first search (DFS),

Depth-limited search, lterative deepening search

* Informed search strategies
— Best-first search: greedy, A*

— Local search: hill climbing, simulated annealing etc.

* (Constraint satisfaction problems
— Backtracking = depth-first search with one variable assigned per node

— Enhanced with: Variable ordering and value selection heuristics, forward
checking, constraint propagation

60

1B

* 6.1, 6.3, 6.5 (% =#%) =59, 5.8, 5.13 (
% = 0

61

