
Game playing

Chapter 6

Game Playing

• Game playing was thought to be a good

problem for AI research:

– game playing is non-trivial

• players need “human-like” intelligence

• games can be very complex (e.g., Chess, Go)

• requires decision making within limited time

– games usually are:

• well-defined and repeatable

• fully observable and limited environments

– can directly compare humans and computers
2

Computers Playing Chess

3

Computers Playing Go

4

Outline
 Games

 Perfect play（最优策略）

— minimax decisions

— α-β pruning（剪枝）

 Resource limits and approximate evaluation

 Games of chance（包含几率因素的游戏）

 Games of imperfect information

Games vs. search problems
“Unpredictable” opponent（不可预测的对手） solution is a strategy specifying a

move for every possible opponent reply

Time limits unlikely to find goal, must approximate

游戏对于低效率有严厉的惩罚

Plan of attack:

• Computer considers possible lines of play (Babbage, 1846)

• Algorithm for perfect play (Zermelo, 1912; Von Neumann, 1944)

• Finite horizon, approximate evaluation (Zuse, 1945; Wiener, 1948;

Shannon, 1950)

• First chess program (Turing, 1951)

• Machine learning to improve evaluation accuracy (Samuel, 1952-57)

• Pruning（剪枝） to allow deeper search (McCarthy, 1956)





Types of games

Deterministic Stochastic (chance)

perfect

information

chess, checkers,

Go（围棋）,

othello

Backgammon（西洋双
陆棋）

monopoly

imperfect

information

battleships,

blind tictactoe

bridge, poker, scrabble

(拼字游戏)

nuclear war

Game tree (2-player, deterministic, turns)

Deterministic Two-Player

• E.g. tic-tac-toe, chess, checkers

• Game search
– A state-space search tree

– Players alternate

– Each layer, or ply, consists of a
round of moves

– Choose move to position with
highest achievable utility

• Zero-sum games
– One player maximizes result

– The other minimizes result

8 2 5 6

max

min

9

Minimax Principle

• Assume both players play optimally

– The computer assumes after it moves the opponent

will choose the minimizing move

– The computer chooses the best move considering

both its move and the opponent’s optimal move

10

max

min

Minimax
Perfect play（最优策略） for deterministic, perfect-information games

Idea: choose move to position with highest minimax value

= best achievable payoff against best play

在对手也使用最优策略的条件下，能导致至少不比其它策略差的结果

假设两个游戏者都按照最优策略进行，那么节点的极小极大值就是对应
状态的效用值（对于MAX）

• MAX优先选择有极大值的状态

• MIN优先选择有极小值的状态















节点为当

节点为当

为终止状态当

MIN)VALUE(-MINMAXmin

MAX)VALUE(-MINMAXmax

)(UTILITY

)VALUE(-MINMAX

)(

)(

ns

ns

nn

n

nSuccessorss

nSuccessorss

Minimax
Perfect play（最优策略） for deterministic, perfect-information games

Idea: choose move to position with highest minimax value

= best achievable payoff against best play

在对手也使用最优策略的条件下，能导致至少不比其它策略差的结果

E.g., 2-ply game:

Minimax algorithm

Properties of minimax

Complete??

14

Properties of minimax

Complete?? Only if tree is finite (chess has specific rules for this).

a finite strategy can exist even in an infinite tree!

Optimal??

15

Properties of minimax

Complete?? Yes, if tree is finite (chess has specific rules for this)

Optimal?? Yes, against an optimal opponent. Otherwise??

Time complexity??

16

Properties of minimax

Complete?? Yes, if tree is finite (chess has specific rules for this)

Optimal?? Yes, against an optimal opponent. Otherwise??

Time complexity?? O(bm)

Space complexity??

17

Properties of minimax

Complete?? Yes, if tree is finite (chess has specific rules for this)

Optimal?? Yes, against an optimal opponent. Otherwise??

Time complexity?? O(bm)

Space complexity?? O(bm) (depth-first exploration)

For chess, b≈35, m≈100 for “reasonable" games

exact solution completely infeasible

But do we need to explore every path?



18

Pruning

• Some of the branches of the game tree won't be taken

if playing against an intelligent opponent

• “If you have an idea that is surely bad, don’t take the

time to see how truly awful it is.”

-- Pat Winston

• Pruning can be used to ignore some branches

 

19

pruning example 

20

pruning example 

21

pruning example 

22

pruning example 

23

pruning example 

24

Why is it called

• is the best value (to MAX) found so far on the current path

到目前为止在路径上的任意选择点发现的MAX的最佳（即最大值）选择

• If v is worse than , MAX will avoid it, so can stop considering v’s other

children  prune that branch

• Define similarly for MIN

 







25

The algorithm 

26

Effectiveness of Search

• Effectiveness depends on the order in which successors are

examined; more effective if best successors are examined first

• Worst Case:

– ordered so that no pruning takes place

– no improvement over exhaustive search

• Best Case:

– each player’s best move is evaluated first

• In practice, performance is closer to best, rather than worst,

case

 

27

Properties of

Pruning does not affect final result

Good move ordering improves effectiveness of pruning

With “perfect ordering," time complexity = O(bm/2)

doubles solvable depth

A simple example of the value of reasoning about which computations are relevant

(a form of metareasoning)

Unfortunately, 3550 is still impossible!

 



28

Outline
 Games

 Perfect play（最优策略）

— minimax decisions

— α-β pruning（剪枝）

 Resource limits and approximate evaluation

 Games of chance（包含几率因素的游戏）

 Games of imperfect information

Resource limits

Standard approach: Depth-limited search

 Use CUTOFF-TEST (截断测试) instead of TERMINAL-TEST（终止测试）

e.g., depth limit (perhaps add quiescence search 静态搜索)

 Use EVAL instead of UTILITY

用可以估计棋局效用值的启发式评价函数EVAL取代效用函数

i.e., evaluation function that estimates desirability of position

Suppose we have 100 seconds, explore 104 nodes/second

106 nodes per move ≈ 358/2

reaches depth 8 pretty good chess program

4-ply lookahead is a hopeless chess player!
– 4-ply ≈ human novice

– 8-ply ≈ typical PC, human master

– 12-ply ≈ Deep Blue, Kasparov





  

30

Evaluation functions

• Function which scores non-terminals

• Ideal function: returns the utility of the position

• In practice: typically weighted linear sum of features（特征） :

Eval(s) = w1f1(s) + w2f2(s) + … + wnfn(s)

e.g., for chess, w1 = 9 with

f1(s) = (number of white queens) - (number of black queens), etc.
31

More on Evaluation Functions

• The board evaluation function estimates how good the current board

configuration is

• A linear evaluation function of the features is a weighted sum of f1, f2, f3,
...

– More important features get more weight

• The quality of play depends directly on the quality of the evaluation function

• To build an evaluation function we have to:

– construct good features using expert domain knowledge

– pick or learn good weights

32

Behavior is preserved under any monotonic（单调的） transformation of EVAL

Only the order matters:

payoff（结果） in deterministic games acts as an ordinal utility（序数效用）

function

Digression: Exact values don't matter

33

Dealing with Limited Time

• In real games, there is usually a time limit T on

making a move

• How do we take this into account?

– cannot stop alpha-beta midway and expect to use

results with any confidence

– so, we could set a conservative depth-limit that

guarantees we will find a move in time < T

– but then, the search may finish early and the

opportunity is wasted to do more search

34

Dealing with Limited Time

• In practice, iterative deepening search (IDS) is

used

– run alpha-beta search with an increasing depth limit

– when the clock runs out, use the solution found for

the last completed alpha-beta search (i.e., the

deepest search that was completed)

35

Deterministic games in practice

Chess (国际象棋）: Deep Blue defeated human world champion Gary Kasparov

in a six-game match in 1997. Deep Blue searches 200 million positions per

second, uses very sophisticated evaluation, and undisclosed methods for

extending some lines of search up to 40 ply（层、厚度）.

– 计算机能够预见它的决策中的长期棋局序列。机器拒绝走一步有决定性短期优势
的棋—显示了非常类似于人类的对危险的感觉。 ——Kasparov

– Kasparov lost the match 2 wins to 3 wins and 1 tie

– Deep Blue played by “brute force” (i.e., raw power from computer speed and memory); it

used relatively little that is similar to human intuition and cleverness

– Used minimax, alpha-beta, sophisticated heuristics

36

Checkers（西洋跳棋）: Chinook, the World Man-Machine Checkers Champion.

• Chinook ended 40-year-reign of human world champion Marion Tinsley in

1994.

• In 2007, checkers was solved: perfect play leads to a draw.

Chinook cannot ever lose

使用了一个提前计算好的存有443,748,401,247个不多于8个棋子的棋局数
据库，使它的残局(endgame)走棋没有缺陷

50 machines working in parallel on the problem

Deterministic games in practice

37

Deterministic games in practice

Othello（奥赛罗）: human champions refuse to compete against computers,

who are too good.

Go（围棋）: human champions refuse to compete against computers, who are

too bad. In go, b > 300（棋盘为19x19）, so most programs use pattern

knowledge bases to suggest plausible moves.

A new benchmark for Artificial Intelligence (人工智能新的试金石)

38

AlphaGo: First to beat human pro
in 19x19 Go

• Google DeepMind computer go player

– deep neural networks:

• value networks: to evaluate board positions

• policy networks: to select moves

– trained by

• supervised learning

• reinforcement learning by self-play

– search algorithm

• Monte-Carlo simulation + value/policy networks

39

AlphaGo: Background

• reduction of search space:

– reduced depth

• position evaluation

– reduced branching

• move sampling based on policy

• policy = probability distribution p(a|s)

40

Deep Neural Networks in AlphaGo

AlphaGo uses two types of neural networks:

– policy network: what is the next move?

• learned from human expert moves

– value network: what is the value of a state?

• learned from self-play using a policy network

SL = supervised learning, RL = reinforcement learning 41

Deep Neural Networks in AlphaGo

42

Nondeterministic games:
backgammon(西洋双陆棋)

43

Nondeterministic games in general
In nondeterministic games, chance introduced by dice, card-shuffling

Simplified example with coin-flipping:

几率节点

44

Nondeterministic games in general

• Weight score by the

probability that move occurs

• Use expected value for move:

instead of using max or min,

compute the average,

weighted by the probabilities

of each child

• Choose move with highest
expected value

45

Maximum Expected Utility

• Why should we average utilities? Why not minimax?

• Principle of maximum expected utility: an agent should chose
the action which maximizes its expected utility, given its
knowledge

• General principle for decision making

• Often taken as the definition of rationality

• We’ll see this idea over and over in this course!

46

Algorithm for nondeterministic games

EXPECTIMINIMAX gives perfect play

Just like MINIMAX, except we must also handle chance nodes:

…

if state is a Max node then

return the highest EXPECTIMINIMAX-VALUE of SUCCESSORS(state)

if state is a Min node then

return the lowest EXPECTIMINIMAX-VALUE of SUCCESSORS(state)

if state is a chance node then

return average of EXPECTIMINIMAX-VALUE of SUCCESSORS(state)

…

47

Stochastic Two-Player

• Dice rolls increase b: 21 possible rolls with 2
dice
– Backgammon  20 legal moves

– Depth 4 = 20 x (21 x 20)3 1.2 x 109

• As depth increases, probability of reaching a
given node shrinks
– So value of lookahead is diminished

– So limiting depth is less damaging

– But pruning is less possible…

• TDGammon uses depth-2 search + very
good eval function + reinforcement
learning: world-champion level play

48

Digression: Exact values DO matter

Behaviour is preserved only by positive linear transformation of EVAL

Hence EVAL should be proportional to the expected payoff

评价函数应该是棋局的期望效用值的正线性变换

49

Outline
 Games

 Perfect play（最优策略）

— minimax decisions

— α-β pruning（剪枝）

 Resource limits and approximate evaluation

 Games of chance（包含几率因素的游戏）

 Games of imperfect information

Games of imperfect information

E.g., card games, where opponent's initial cards are unknown

Typically we can calculate a probability for each possible deal

Seems just like having one big dice roll at the beginning of the game

Idea: compute the minimax value of each action in each deal,

then choose the action with highest expected value over all deals

在评价一个有未知牌的给定行动过程时，首先计算出每副可能牌的出牌行动的极
小极大值，然后再用每副牌的概率来计算得到对所有发牌情况的期望值。

51

Example
Four-card bridge/whist/hearts hand, MAX to play first

52

Example
Four-card bridge/whist/hearts hand, MAX to play first

53

Example
Four-card bridge/whist/hearts hand, MAX to play first

54

Proper analysis

* Intuition that the value of an action is the average of its values

in all actual states is WRONG

With partial observability, value of an action depends on the

information state or belief state（信度状态） the agent is in

Can generate and search a tree of information states

Leads to rational behaviors such as

 Acting to obtain information

 Signaling to one's partner

 Acting randomly to minimize information disclosure

55

Computers Playing Texas Holder

• 2015, Heads-up limit hold’em poker is solved （
有限下注德州扑克）

• 2017, DeepStack became the first AI capable of

beating professional poker players at heads-up

no-limit Texas hold‘em poker （无限下注德州
扑克）

• 2019, AI now masters six-player poker, Science

56

Computers Playing Texas Holder

According to the human players

that lost out to the machine,

Libratus is aptly named. It does a

little bit of everything well:

• knowing when to bluff

• and when to bet low with very good cards,

• as well as when to change its bets just to

thrown off the competition.

57

Computers Playing Mahjong

• 2017 年，竞技麻将成为继围棋、象棋、国际象棋、桥牌和
国际跳棋之后的第六项国际正式智力运动项目

• 2019年6月，由微软亚洲研究院开发的麻将 AI 系统 Suphx

成为首个在国际知名专业麻将平台“天凤”上荣升十段的
AI 系统

58

Summary

• Games are fun to work on!

– perfection is unattainable  must approximate

– Games are to AI as grand prix racing is to automobile design

• Game playing is best modeled as a search problem

– Search trees for games represent alternate computer/opponent moves

• Evaluation functions estimate the quality of a given board configuration for

each player

• Minimax is an algorithm that chooses “optimal” moves by assuming that the

opponent always chooses their best move

• Alpha-beta is an algorithm that can avoid large parts of the search tree, thus

enabling the search to go deeper — 消除无关的子树以提高效率

59

Summary of Search

• Uninformed search strategies

Breadth-first search (BFS), Uniform cost search, Depth-first search (DFS),

Depth-limited search, Iterative deepening search

• Informed search strategies

– Best-first search: greedy, A*

– Local search: hill climbing, simulated annealing etc.

• Constraint satisfaction problems

– Backtracking = depth-first search with one variable assigned per node

– Enhanced with: Variable ordering and value selection heuristics, forward

checking, constraint propagation

60

作业

• 6.1，6.3，6.5（第二版）=5.9，5.8，5.13（
第三版）

61

